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Summary: Workdonesofar:

EThe main objective Is assisting visually impaired people to;

navigate safely in an urban environment through computer :

'vision and machine learning. We start by enhancing available

Emaps by adding a new layer with street information such as§
street junctions, traffic lights, and other safety features for: : , _ . e
‘pedestrian users. This map will use for safe route planning. We explored available datasets and the capability of detecting

EFinaIIy, during navigation, real time tasks such as obstaclesé

‘avoidance and traffic light status recognition will be activated.
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'Research Questions:

- Can we define the location and type of intersections in a@

certain region using machine learning?

= Can we detect the location and direction of traffic lights on:

a road intersection using machine learning?

- Is there a method to define the shortest path between twoé
~ points that contains the largest number of traffic lights to:

guarantee safe navigation?

- Can we detect dynamic factors (traffic light status, obstacleé

location, etc.) in real-time?
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‘Technology solution:

-+ We use machine learning to detect street objects from

satellites and street-level images (static map).
Building static map

Satellites images

Street-level images

Detect Find the street Detect traffic
conjunctions ‘ view images for light, ramps,
, crossing conjunctions etc.

point, etc.
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A static map is utilized to define the best route according to
~ the user.

* In real-time, dynamic factors need to be detected.

Use static map in real time

Before journey
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v We reviewed the related literature and published a review paper.

\/ Currently, we are liaising with external organizations to get the
user perspective on safe navigation issues.

road network components from satellite images using machine:
learning and CNN. |

Intersection classifier Result

» Experimental purpose: Training a classifier to detect the existence of an Intersection in a satellite
image.

Classifiers: (Naive bayes(NB), decision tree(DT), logistic regression(LR), SVM, K-nearest
neighbour(KNN), neural network(NN))

We use this classical classifier because the amount of labeled dataset until now is small
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Experimental purpose: Training a classifier to detect the existence of an intersection in a satellite
image.

Recall For each class

HRecallClass1 M RecallClass2  m Average

# of class two classes
(intersection and no
intersection)
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Intersection classifier Result

# of images | 262 For each class

Recall: the number of true positives
are divided by the total number of
elements that actually belong to the
positive class.

Using a CNN auto-encoder to learn about the images and to use an encoder as feature
representation for classifiers (Naive Bayes(NB), decision tree(DT), logistic regression(LR), SVM, K-
nearest neighbour (KNN), neural network(NN))

Recall For each class

HRecall Class1 M Recall Class 2 ™ average

# of class two classes
(intersection and no 78 77 715

79.5
intersection
# of images | 262 For each class
Recall: the number of true positives
are divided by the total number of
elements that actually belong to the
positive class.
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Next steps :

51. Develop generalized models to identify useful urban markers

for maps using wide coverage datasets .

2 Find approaches to minimize reliance on data labelling.
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